You are here : Version anglaise > Training > Doctoral studies

Publié le December 3, 2019 | Updated on May 18, 2020

Coding spatial information in embryo with electric fields

Sarah DINVAUT - Under the supervision of Julien Falk and Valérie Castellani.

Long distance navigation of axons is marked by choice points, instructing highly stereotyped directional changes of axon trajectories. In this stepwise model, each step is thought to be essential for the next one, but intriguingly, examples suggest that pathway experience can be dispensable for axons to reach their final destination. We investigated pathway-independent ability of axons to locate their target, using two populations of spinal cord neurons having drastically different target location in the organism: the dorsal interneurons, which target the central nervous system and ventral motoneurons, which target muscles. After grafting these neurons at ectopic positions in the chicken embryo, both neuron-types were observed to form axons which, remarkably, oriented towards and reached appropriate targets. This suggests that, in the embryo, an overall guidance information might exist that enables the axons to locate positions over large scales. Beside well-studied chemical cues, bioelectric signals are attractive candidates for this function. Electric Fields (EF) were detected in the embryo and reported to encode spatial information. Thus, using in vitro set-ups, we investigated whether EFs in the range of the ones measured in the embryo could influence the navigation of chick motor and dorsal interneuron axons. We found that both axon subsets orient parallel to EFs. Yet, they significantly exhibited different sensitivities, which could contribute to elicit different trajectory choices in vivo. Next, we found that Concanavalin A (ConA) could block axon response to EF, supporting a role of cell surface receptors known to bind to ConA. Thus, we performed a pharmacological screening on ion channels and pumps that bind ConA and identified Na+/K+ ATPases as promising candidates. Preliminary knock-down experiments targeting Na+/K+ ATPases subunits suggest their contribution to CE response and axon navigation in vitro and in vivo. Collectively, our findings should provide novel insights into the mechanisms ensuring axon guidance fidelity and resilience and reveal unknown contributions of bioelectric signals and Na+/K+ ATPases during neuronal development